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Onset of convection in two layers
of a binary liquid
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We perform linear stability calculations for horizontal bilayers of a two-component
fluid that can undergo a phase transformation, taking into account both buoyancy
effects and thermocapillary effects in the presence of a vertical temperature gradient.
Critical values for the applied temperature difference across the system that is
necessary to produce instability are obtained by a linear stability analysis, using both
numerical computations and small wavenumber approximations. Thermophysical
properties are taken from the aluminum–indium monotectic system, which includes
a liquid–liquid miscibility gap. In addition to buoyant and thermocapillary modes of
instability, we find an oscillatory phase-change instability due to the combined effects
of solute diffusion and fluid flow that persists at small wavenumbers. This mode is
sensitive to the ratio of the layer depths, and for certain layer depths can occur for
heating from either above or below.

1. Introduction
Materials science provides a rich source of interfacial instabilities driven by convect-

ive heat and mass transfer (Glicksman, Coriell & McFadden 1986; Davis 1994, 2001).
In this paper we consider the stability of a planar liquid–liquid interface of a binary
monotectic alloy in the presence of a temperature gradient normal to the interface. The
directional growth of binary monotectics can produce useful composites consisting of
rod-like structures of one phase aligned in the growth direction within a second-phase
matrix (Hunt & Lu 1994). Controlled growth typically takes place in a moving temper-
ature gradient, with the higher temperature parent phase of liquid (L1) transforming
at the monotectic temperature (TM ) into two daughter phases consisting of a second
liquid phase (L2) and a solid phase (S). The observed geometry of the daughter phases
typically consists of rods of one phase embedded in a matrix of the second phase. The
resulting inter-rod spacings are often predicted using a variation (Derby & Favier
1983; Coriell et al. 1997; Stöcker & Ratke 1999, 2000) of the Jackson–Hunt theory
(Jackson & Hunt 1966) of the related process of eutectic growth, which produces two
solid phases (L → S1 + S2) instead of a solid and liquid phase (L1 → S + L2).

The Jackson–Hunt theory is less successful for predicting the spacing in monotectic
alloys, and the discrepancy is often attributed to the effects of fluid flow, particularly
the convection made possible by the presence of liquid–liquid (L1–L2) interfaces in
the system (Hunt & Lu 1994; Stöcker & Ratke 2000). In order to study the effects of
convective motion in a monotectic system theoretically we consider the simpler case of
a semi-infinite stationary horizontal interface separating the two liquid phases (L1 and
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L2) in an applied temperature gradient, while ignoring the formation of the solid phase
(S). This simple geometry allows a one-dimensional base state whose linear stability
can be determined in detail, either numerically or, in limiting cases, analytically. The
resulting analysis of the two-layer phase-transforming system includes the effects of
buoyancy, density change, capillarity and thermocapillarity.

The L1–L2 phase transition in a monotectic system is an example of a miscibility
gap in a binary (two-component) material. Such miscibility gaps are very common,
particularly in organic systems. The equilibrium and kinetic behaviour of systems
near the critical point (TC) of the miscibility gap, where the two phases become
identical, is a subject of extensive research (Berg & Moldover 1989). In this paper we
extend our previous work on single component systems (McFadden et al. 2007a ,b;
McFadden & Coriell 2009) to the case of two-component binary alloys. Specifically,
we consider a metallic system, aluminum–indium, at the monotectic temperature,
which is relevant for monotectic growth but is well below the critical temperature.
In this system we find that in addition to the analogs of Rayleigh–Bénard modes
(Turner 1973) and Marangoni modes of instability (Davis 1987) there is a novel
oscillatory mode at large wavelengths that persists in the absence of either buoyancy or
thermocapillarity.

The stability of a fluid–fluid interface is important in a number of scientific and
technological applications. The case of non-interacting immiscible fluid bilayers has
been well studied both theoretically and experimentally (Davis 1987; Joseph &
Renardy 1993; Andereck et al. 1998; Johnson & Narayanan 1998; Schatz & Neitzel
2001; Nepomnyashchy, Verlarde & Colinet 2002; McFadden et al. 2007a). This
situation can be contrasted with that of a system in which the bilayers represent
different fluid phases of a given single-component material (Busse & Schubert 1971;
Busse 1989; Sakurai et al. 1999; McFadden et al. 2007b). The phase transformation
that may then occur between the two layers is described by a modification of the
usual interfacial boundary conditions that are used to describe immiscible fluids.
For a two-phase system there can be mass flow across the interface, which is not a
material surface. In addition, latent heat is typically generated at the interface which
is conducted into the surrounding fluid. Finally, a description of the thermodynamic
state of the interface is required, which is often based either on an assumption
of local thermodynamic equilibrium or a kinetic statement governing systematic
deviations from local thermodynamic equilibrium. As a result, the stability results for
a two-phase bilayer system are quantitatively and even qualitatively different than
those for an immiscible system. For example, the oscillatory phase-change instability
that we describe here for a binary monotectic system has no analog in immiscible
systems.

The outline of the paper is as follows. In the next section we describe the model,
including a summary of the thermodynamics and governing equations. Numerical
results are given in § 3, followed by a summary of some small wavenumber expansions
in § 4. A discussion is provided in § 5, followed by conclusions. Details about the
thermophysical properties of the aluminum–indium system are given in the Appendix.

2. Model
We first describe the thermodynamic model for the aluminum–indium liquid–liquid

miscibility gap (see tables 1 and 2 for thermophysical constants). We then present the
governing equations and boundary conditions, and pose the linear stability problem.
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Density of pure aluminum ρAl 2.392 × 103 kg m−3

Density of pure indium ρIn 6.697 × 103 kg m−3

Dynamic viscosity of pure aluminum μAl 1.322 × 10−3 kg (s m)−1

Dynamic viscosity of pure indium μIn 7.276 × 10−4 kg (s m)−1

Kinematic viscosity of pure aluminum νAl 5.53 × 10−7 m2 s−1

Kinematic viscosity of pure indium νIn 1.09 × 10−7 m2 s−1

Thermal conductivity of pure aluminum kAl 0.899 × 102 J (s m K)−1

Thermal conductivity of pure indium kIn 0.482 × 102 J (s m K)−1

Thermal diffusivity of pure aluminum κAl 0.348 × 10−4 m2 s−1

Thermal diffusivity of pure indium κIn 0.296 × 10−4 m2 s−1

Partial molar volume of aluminum V̄Al 1.003 × 10−5 m3 mole−1

Partial molar volume of indium V̄In 1.823 × 10−5 m3 mole−1

Table 1. Thermophysical properties of pure aluminum and pure indium (Gale & Totemeier
2004) at the monotectic temperature TM =909.65 K (636.5o C).

Mole fraction of indium in the α phase Xα 0.04657
Mole fraction of indium in the β phase Xβ 0.8663
Mass fraction of indium in the α phase cα 0.1721
Mass fraction of indium in the β phase cβ 0.9650
dT/dcα mα 1108.0 K
−dT/dcβ mβ 4687.0 K
Density of the α phase ρα 2.689 × 103 kg m−3

Density of the β phase ρβ 6.300 × 103 kg m−3

Kinematic viscosity of the α phase να 4.536 × 10−7 m2 s−1

Kinematic viscosity of the β phase νβ 1.188 × 10−7 m2 s−1

Dynamic viscosity of the α phase μα 1.220 × 10−3 kg (s m)−1

Dynamic viscosity of the β phase μβ 7.484 × 10−4 kg (s m)−1

Thermal expansion coefficient of the α phase ηα 1.160 × 10−4 K−1

Thermal expansion coefficient of the β phase ηβ 1.029 × 10−4 K−1

Diffusivity of indium in aluminum in the α phase Dα 9.0 × 10−9 m2 s−1

Diffusivity of indium in aluminum in the β phase Dβ 9.0 × 10−9 m2 s−1

Thermal diffusivity of the α phase κα 0.339 × 10−4 m2 s−1

Thermal diffusivity of the β phase κβ 0.298 × 10−4 m2 s−1

Thermal conductivity of the α phase kα 0.827 × 102 J (s m K)−1

Thermal conductivity of the β phase kβ 0.497 × 102 J (s m K)−1

Molar volume in the α phase V α
m 1.041 × 10−5 m3 mole−1

Molar volume in the β phase V β
m 1.713 × 10−5 m3 mole−1

Surface energy γ 0.0265 J m−2

Temperature dependence of surface energy γT −2.274 × 10−4 J (K m2)−1

Latent heat (difference in specific enthalpy) Lαβ = hα
m − hβ

m 3.099 × 105 J kg−1

Total thickness of layer d 0.01 m
Gravitational acceleration g 9.8 m s−2

Table 2. Thermophysical properties of the aluminum–indium system (Bräuer & Müller-Vogt
1998; Merkwitz & Hoyer 1999; Gale & Totemeier 2004) at the monotectic temperature
TM = 909.65 K (636.5o C).

2.1. Thermodynamic model

The thermodynamic equilibrium conditions for two-phase coexistence at a liquid–
liquid interface can be derived from the Gibbs free energy density (Lupis 1983),
ḡ(T , p, c) = cμ̄In(T , p, c) + (1 − c)μ̄Al(T , p, c), where μ̄Al and μ̄In are the chemical
potentials of aluminum and indium, and T , p and c are the temperature, pressure
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Figure 1. The L1–L2 coexistence curve for the thermodynamic model of the
aluminum–indium system at atmospheric pressure. The dotted line at the monotectic
temperature TM connects the compositions of two-phase equilibrium. The composition c
denotes the mass fraction of indium, and the α phase (β phase) is rich in aluminum (indium).

and mass fraction of indium, respectively; the mass fraction of aluminum is then
(1 − c). If we let α and β denote the L1 (aluminum rich) and L2 (indium rich) phases,
then the equilibrium mass fractions c̄α and c̄β are determined from the equality of
chemical potentials,

μ̄Al(T , p, c̄α) = μ̄Al(T , p, c̄β), μ̄In(T , p, c̄α) = μ̄In(T , p, c̄β), (2.1)

where T and p are the interfacial temperature and pressure. An assessment for the
aluminum–indium system (Coughanowr 1989; U. R. Kattner, private communication,
2009) produced the model summarized in the Appendix. The resulting co-existence
curve at atmospheric pressure pR is shown in figure 1. At T = TM the equilibrium
concentrations are given by c̄α =0.1721 and c̄β = 0.9650. Near these points the
linearized co-existence curve takes the form

T = TM + m̄α(c − c̄α), T = TM − m̄β(c − c̄β), (2.2)

where m̄α > 0 and m̄β > 0 are given in table 2, along with some additional
thermophysical property values.

2.2. Geometry and governing equations

We consider a semi-infinite horizontal two layer system, with vertical heating across
the layers. The unperturbed upper layer (the lower density α phase) extends over
the interval 0 <z < H̄α , and the unperturbed lower layer (the higher density β phase)
extends over the interval −H̄β < z < 0. Specifying the values of c̄α , c̄β , H̄α and H̄β

determines the total amount of solute (per unit area) in the system. In the following we
choose to specify the ratio H̄α/H̄β , rather than specifying the total amount of solute
in the system. Without loss of generality we consider linear stability results for a
two-dimensional system, with velocity components u and w in the x and z directions,
respectively. The perturbed interface is assumed to have the form z = h(x, t); the
horizontal coordinate extends over the interval −∞ <x < ∞. The upper boundary
at z = H̄α and the lower boundary at z = −H̄β are assumed to be isothermal and
impermeable to solute, with no-slip boundary conditions. The equations of motion
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are given by the Navier–Stokes equations in the Boussinesq approximation (Turner
1973), coupled to equations for heat and mass transfer (Landau & Lifshitz 1987).

2.3. Base state

We consider a quiescent one-dimensional base state with a static temperature gradient
normal to the planar L1–L2 interface at z =0, where T = TM and p = pR , with
corresponding equilibrium values c̄α and c̄β . The solute field is assumed to be uniform
in each phase, and the thermal field is

T α(z) = TM + Gαz (2.3)

in the α phase, and

T β(z) = TM + Gβz (2.4)

in the β phase. The temperature gradients in the base state satisfy

0 = kαGα − kβGβ, (2.5)

where kα and kβ are the thermal conductivities in each phase. The pressure field in
the base state is hydrostatic. We assume the transport coefficients are uniform in
each phase, and, following the Boussinesq approximation, we assume the density is
uniform in all terms in the governing equations except for the gravitational term.

2.4. Dimensionless parameters

We make the equations dimensionless based on a length scale given by the total depth
d = H̄α + H̄β , a time scale based on the thermal time d2/κβ , the velocity scale κβ/d ,
the temperature scale Gβ d and the pressure scale νβκβρ̄β/d

2. Here νβ is the kinematic
viscosity, κβ is the thermal diffusivity and ρ̄β = ρ̄(TM, c̄β) is the density in the β phase.
These scales introduce the dimensionless parameters

G =
Gβd

TM

, (2.6)

ν∗ =
να

νβ

, κ∗ =
κα

κβ

, D∗ =
Dα

Dβ

, ρ∗ =
ρ̄α

ρ̄β

, (2.7)

η∗ =
ηα

ηβ

, k∗ =
kα

kβ

, G∗ =
Gα

Gβ

, μ∗ =
μα

μβ

, (2.8)

Pr=
νβ

κβ

, Sc=
νβ

Dβ

, Cr =
μβκβ

dγ
, Bo =

gρβd
2

γ
, (2.9)

GRa =
gηβGβd

4

νβκβ

, GMa = −γT Gβd
2

μβκβ

, (2.10)

Lαβ/G =
ρβ Lαβ κβ

kβ Gβ d
, m̃α =

mα

TM

, m̃β =
mβ

TM

, (2.11)

and the geometrical parameter Hα = H̄α/d representing the dimensionless depth of
the α phase; the corresponding depth of the β phase is Hβ = 1 − Hα . Here G is
the dimensionless temperature gradient in the β phase, ν∗ is the ratio of kinematic
viscosities, κ∗ is the ratio of thermal diffusivities, D∗ is the ratio of solute diffusivities,
ρ∗ is the ratio of densities, η∗ is the ratio of thermal expansion coefficients, k∗ is the
ratio of thermal conductivities, G∗ is the ratio of temperature gradients in the base
state, μ∗ is the ratio of dynamic viscosities, γ is the surface energy at T = TM , γT is
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Density ratio ρ∗ = ρα/ρβ 0.427
Kinematic viscosity ratio ν∗ = να/νβ 3.818
Dynamic viscosity ratio μ∗ = μα/μβ 1.630
Thermal diffusivity ratio κ∗ = κα/κβ 1.137
Thermal conductivity ratio k∗ = kα/kβ 1.664
Thermal expansion ratio η∗ = ηα/ηβ 1.127
Diffusivity ratio D∗ = Dα/Dβ 1.0
Schmidt number Sc= νβ/Dβ 13.2
Prandtl number Pr = νβ/κβ 3.99 × 10−3

Bond number Bo= gρβd2/γ 233.1
Crispation number Cr = μβκβ/dγ 8.420 × 10−5

Marangoni number Ma= −γT TEd/μβκβ 92750.0
Rayleigh number Ra= gηβTEd3/νβκβ 259200.0
Dimensionless latent heat Lαβ = ρβ Lαβ κβ/kβ TE 1.287
Dimensionless dT/dcα m̃α 1.218
Dimensionless −dT/dcβ m̃β 5.152
Dimensionless −dT/dp ñαα = ñαβ 1.865 × 10−13

Dimensionless −dT/dp ñβα = ñββ −1.949 × 10−13

Table 3. Dimensionless properties of the aluminum–indium system at the monotectic
temperature TM = 909.65 K (636.5o C).

the derivative of γ with respect to temperature at T = TM , Pr is the Prandtl number,
Sc is the Schmidt number, Cr is the crispation number, Bo is the Bond number, g is
the gravitational acceleration, GRa is the Rayleigh number, GMa is the Marangoni
number, Lαβ/G is the dimensionless latent heat and m̃α and m̃β are dimensionless
slopes of the coexistence curve. We consider the temperature gradient Gβ to play
the role of an experimental control parameter, and so have chosen to isolate the
dependence on Gβ in the dimensionless parameters in the single variable G. The
parameters Ra, Ma and Lαβ are then independent of the temperature gradient, and
depend only on the geometry and material parameters. We note that μ∗ = ρ∗ν∗ and
k∗G∗ = 1. Values of the dimensionless parameters for the aluminum–indium system
are given in table 3.

2.5. Linearized governing equations

We assume a horizontal wavenumber a and a temporal growth rate σ = σr + iσi; the
perturbed interface z = h(x, t) then has the specific form

z = h̃ exp(iax) exp(σrt + iσit), (2.12)

where h̃ is the dimensionless interface amplitude. Neutral stability corresponds to
σr =0. A direct mode of instability has σi = 0 (‘exchange of stabilities’), whereas the
case σi �= 0 represents an oscillatory mode (‘overstability’); for this problem oscillatory
modes come in complex conjugate pairs.

The perturbed quantities (indicated by tildes) satisfy

iaũα + w̃α
z = 0, (2.13)

Pr−1 σ ũα + iap̃α/ρ∗ = ν∗(ũα
zz − a2ũα), (2.14)

Pr−1 σ w̃α + p̃α
z /ρ

∗ = ν∗(w̃α
zz − a2w̃α) + η∗GRaT̃ α, (2.15)

σ T̃ α + G∗w̃α = κ∗(T̃ α
zz − a2T̃ α), (2.16)
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Pr−1 Sc σ c̃α = D∗(c̃α
zz − a2c̃α), (2.17)

for z > 0, and

iaũβ + w̃β
z = 0, (2.18)

Pr−1 σ ũβ + iap̃β = ũβ
zz − a2ũβ, (2.19)

Pr−1 σ w̃β + p̃β
z = w̃β

zz − a2w̃β + GRaT̃ β, (2.20)

σ T̃ β + w̃β = T̃ β
zz − a2T̃ β, (2.21)

Pr−1 Sc σ c̃β = (c̃β
zz − a2c̃β), (2.22)

for z < 0. Here w̃α
z denotes the partial derivative ∂w̃α/∂z, etc.

The boundary conditions at z = 0 are

T̃ α + G∗h̃ = T̃ β + h̃, (2.23)

ũα − ũβ = 0, (2.24)

(p̃α − p̃β) − BoCr−1(ρ∗ − 1)h̃ + a2Cr−1h̃ =2(μ∗w̃α
z − w̃β

z ), (2.25)

(
μ∗ũα

z − ũβ
z

)
+ ia

(
μ∗w̃α − w̃β

)
− ia GMa

(
T̃ α + G∗h̃

)
= 0, (2.26)

G
[
T̃ α + G∗h̃

]
= m̃αc̃

α, (2.27)

G
[
T̃ α + G∗h̃

]
= −m̃β c̃

β, (2.28)

ρ∗(w̃α − σ h̃) = (w̃β − σ h̃), (2.29)

G(k∗T̃ α
z − T̃ β

z ) = ρ∗(w̃α − σ h̃)Lαβ, (2.30)

D∗c̃α
z − c̃β

z =Pr−1 Sc ρ∗(w̃α − σ h̃){c̄α − c̄β}. (2.31)

The linearized differential equations have constant coefficients, and can be solved
explicitly to obtain a determinant condition whose roots determine the growth rate σ

as was done by Huang & Joseph (1992) for the single component problem. The system
is large enough that the determinant equation cannot be solved analytically, and a
numerical solution is required. In this work the determinant condition was solved
symbolically for direct instabilities (σr = 0), and expanded for small wavenumbers to
provide analytical insight concerning the dependence of G on layer depth and the other
dimensionless parameters. We also computed the entire solution numerically using
two additional methods: a matrix collocation procedure and a shooting procedure,
as described previously (McFadden et al. 2007a ,b). The matrix collocation procedure
is based on a pseudospectral Chebyshev discretization of the solution, and provides
an approximate set of growth rates for a given wavenumber and value of G. In the
shooting procedure a single growth rate is obtained by using the two-point boundary
value solver BVSUP (Scott & Watts 1977), coupled with the root finder SNSQ (Powell
1970), both from the SLATEC library (Vandevender & Kaskell 1970), to implement
a method described by Keller (1976) to solve the eigenvalue problem. The shooting
procedure is generally more accurate but requires a good initial guess, which can be
provided from the small wavenumber approximation, the collocation procedure, or
previous solutions via continuation. The various solution procedures have been used
to cross-validate the numerical results.
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Figure 2. Neutral stability curves of thermocapillary modes (Ma =92 750) of the
aluminum–indium system with equal layer depths for the case of heating from above (G > 0)
with buoyancy suppressed (Ra =0). The resulting Marangoni instability has two branches, a
direct mode with σi = 0 (solid curve) at low wavenumbers, and an oscillatory mode with σi �= 0
(dashed curve) at larger wavenumbers. The dot indicates the corresponding analytical result
from a small wavenumber approximation which agrees well with the numerical results.

3. Numerical results
For the given material properties of the aluminum–indium system, the stability

results are functions of the wavenumber a, the dimensionless temperature gradient
G and the dimensionless layer depth Hα . For a given layer depth, we plot neutral
stability curves indicating values of G as a function of a for which σr =0; the region
of stability (σr < 0) generally lies in the direction of smaller values of |G|. In this
section we present numerical results for the case of equal layer depths (Hα = 1/2). The
results include neutral modes that persist to small wavenumbers, which we are able to
describe by approximate analytical expressions in the next section. As these expression
indicate that the small wavenumber behaviour is quite sensitive to the layer depths,
we also include results for unequal layer depths to illustrate this behaviour. In order
to help identify the mechanisms driving the instabilities we also compare results using
the parameters in table 3 with idealized systems for which Ra = 0 or Ma = 0.

3.1. Heating from above

The case of heating from above corresponds to Gβ > 0, so that G is positive. Neutral
stability curves (σr =0) for the case of Marangoni convection alone with buoyancy
suppressed (Ra = 0, with relevance to low gravity conditions) are shown in figure 2.
The most dangerous mode is oscillatory, with a critical wavenumber a = 4.05 and
critical frequency σi = ±1.0373 for G = 0.1302. For smaller wavenumbers the frequency
decreases until it vanishes for a =0.11 where the oscillatory mode merges with a direct
mode of instability. The direct mode persists to small wavenumbers, and its asymptotic
value of G can be predicted from a small wavenumber approximation for Ra = 0
given by

G = −1.8535
(ρ∗ − 1)Bo

MaCr
= 31.7007 (3.1)
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Figure 3. Neutral stability curves for equal layer depths for the case of heating from above
(G > 0) including both thermocapillarity (Ma = 92 750) and buoyancy (Ra =259 200). Direct
modes (σi = 0) are shown as solid curves, and oscillatory modes (σi �= 0) are shown as dashed
curves. A portion of the oscillatory mode corresponding to smaller wavenumbers is nearly
coincident with the direct mode; this oscillatory mode actually forms a closed loop.

for the case of equal depths (the small wavenumber approximation is described in
the next section). This result agrees with the numerical value for a = 1.0 × 10−4 to
better than 4 digits. The direct mode exhibits pole-like behaviour near a = 0.15;
for wavenumbers a > 0.15 the direct mode reappears with negative values of G
(cf. figure 5 below).

In figure 3 we show the effects of including buoyancy (Ra = 259 200 under
terrestrial gravity), which for G > 0 should be a stabilizing influence. The Boussinesq
approximation should be valid for values of |G| � 10, which ensures that the density
variation with temperature is small (we show results for higher values only in order to
indicate trends of the various effects). The most dangerous instability is now a direct
mode, with a critical wavenumber a = 4.35 for G = 0.1996. For smaller wavenumbers
there is a closed oscillatory loop in close proximity to the small wavenumber side of
the direct mode, and also there is a branch of an oscillatory mode for larger values
of wavenumber; these oscillatory modes presumably result from the breakup of the
most dangerous oscillatory mode with Ra = 0 in figure 2 under the stabilizing effects
of buoyancy. Buoyancy effects have also stabilized the small wavenumber direct mode
as well, which occurs for G = 38.45.

3.2. Heating from below

The case of heating from below corresponds to Gβ < 0, so that G is negative. The
system is then potentially subject to buoyant modes of instability. With equal layer
depths we find an oscillatory mode of instability at low wavenumbers, even in the
absence of thermocapillarity and buoyancy (Ra = Ma = 0). Parameter studies indicate
that critical values of G are found to be sensitive to the shape of the coexistence
curve, the density and viscosity ratios and the layer depths, suggesting that the mode
is a convectively-influenced phase-change mode; this is also evident from the small
wavenumber expansions given below. A plot of the marginal values of G for this
mode using the parameters in table 3 is shown in figure 4.
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Figure 4. Neutral stability curves (σi �= 0) for equal layer depths heated from below (G < 0)
for the phase-change mode. For curve A: Ma = Ra = 0; for curve B: Ma = 92 750 and Ra =0;
for curve C: Ma = 92 750 and Ra =259 200; and for curve D: Ma =0 and Ra = 259 200. The
dot indicates the corresponding analytical result from a small wavenumber approximation
which agrees well with the numerical results.

The phase-change mode persists in the presence of both thermocapillarity and
buoyancy, although the marginal values are affected as also indicated in figure 4. The
critical wavenumber corresponds to a = 0, and the small wavenumber approximation
for Ra = Ma =0 and equal depths gives the result

G = −0.5838
m̃αm̃β{c̄α − c̄β}(1 + k∗)

[m̃α − m̃β]
= −1.9670, (3.2)

and

σ 2
i = 0.02846 a2 PrD∗

(
Bo

Cr

) [
m̃α − m̃β

]
{
Sc

[
m̃α D∗ − m̃β

]} = 23.8146 a2, (3.3)

which yields σi = ±4.880×10−4 for a = 1.0×10−4. These results are in good agreement
with the numerical results, G = −2.009 and σi = ±4.886 × 10−4, for a = 1.0 × 10−4.

Neutral stability curves for the case of Marangoni convection alone with buoyancy
suppressed (Ra = 0) are shown in figure 5. Although the oscillatory phase change
mode persists, the most dangerous instability is a direct Marangoni mode with a
critical wavenumber a = 4.00 for G = −0.2002. As noted above, this direct mode
exhibits pole-like behaviour near a = 0.15 (cf. figure 2), and is increasingly stable at
large wavenumbers.

If the destabilizing effects of buoyancy are included, there are many additional
thermal modes of instability in the two layers. For example, if the true interface is
replaced by an idealized interface that is isothermal, non-deformable and impermeable
to solute, there are two decoupled families of buoyant modes featuring stacked
convective cells in each layer with no interaction between the layers. For the actual
phase-change boundary with heat and mass transport through the interface these
modes are weakly coupled, as shown in figure 6 with the effects of thermocapillarity
ignored. More specifically, where the curves for the uncoupled modes cross, the weakly
coupled modes have near-intersections in which the crossing points are replaced by
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Figure 5. Neutral stability curves for equal layer depths heated from below (G < 0) including
the effects of thermocapillarity (Ma =92 750) but with buoyancy suppressed (Ra= 0). The
oscillatory phase change mode (dashed curve) extends to small wavenumbers, and the direct
Marangoni mode (solid curve) is the most dangerous instability.
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Figure 6. Neutral stability curves for equal layer depths heated from below (G < 0) including
the effects of buoyancy (Ra = 259 200) but with thermocapillarity suppressed (Ma = 0). The
oscillatory phase change mode (dashed curve) extends to small wavenumbers, and a family of
direct thermal buoyancy modes (solid curves) includes the most dangerous instability.

smooth transitions where the modes exchange identity; these interactions occur over
narrow regions of parameter space which are not well resolved in figure 6. The
most dangerous mode is a direct mode for a =5.40 with G = −0.07938. There is a
single circulation cell in the lower layer (β phase), with a single, weaker, counter-
rotating cell in the upper layer. In contrast, the next higher direct thermal mode
with G = −0.4448, has a single circulation cell in the upper layer (α phase), with a
single, weaker, counter-rotating cell in the lower layer. Many more modes featuring
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Figure 7. Neutral stability curves for equal layer depths heated from below (G < 0) including
the effects of both buoyancy (Ra= 259 200) and thermocapillarity (Ma = 92 750). The oscillatory
phase change mode extends to small wavenumbers, and additional oscillatory instabilities occur
athwart the direct modes under the combined effects of buoyancy and thermocapillarity.

increasing numbers of stacked convection cells occur for increasing values of |G|; the
first few are shown in figure 6. The oscillatory phase change mode is also present.

Neutral curves showing the effects of both buoyancy and thermocapillarity are
shown in figure 7. The most dangerous instability is a direct mode for a =4.80 with
G = −0.04081; the addition of thermocapillarity has slightly destabilized the system.
For higher values of |G| the interactions are much more complicated, including
oscillatory modes that occur where coupled direct modes appear to cross.

4. Small wavenumber approximations
Linear instabilities that persist to small wavenumbers occur for both the Marangoni

mode and the phase-change mode. Approximate conditions for instability may be
obtained analytically for these two cases, which we outline in this section. For
simplicity we ignore the effect of buoyancy, which does not play a significant role in
the small wavenumber instabilities.

4.1. Marangoni mode

For small wavenumbers with Ra = 0 the direct mode representing a thermocapillary
instability (cf. figure 2) can be computed analytically. The equations have an
approximate solution with linear temperature fields, and constant pressure and solute
fields. Specifically, we find

T̃ α(z) =
(G∗ − 1)

(Hα + k∗Hβ)
(z − Hα)h̃, T̃ β(z) =

k∗(G∗ − 1)

(Hα + k∗Hβ)
(z + Hβ)h̃, (4.1)

c̃α(z) =
G

m̃α(Hα + k∗Hβ)
h̃, c̃β(z) =

−G
m̃β(Hα + k∗Hβ)

h̃, (4.2)

p̃α(z) = P α = −
μ∗H 2

βBo(ρ∗ − 1)

Cr[H 2
α − μ∗H 2

β ]
h̃, p̃β(z) = P β = − H 2

αBo(ρ∗ − 1)

Cr[H 2
α − μ∗H 2

β ]
h̃, (4.3)
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Figure 8. Neutral stability results (solid curve) for the small wavenumber approximation
to the direct thermocapillary mode (Ma = 92 750) as a function of the dimensionless layer
depth Hα , excluding the effects of buoyancy (Ra =0). The data points are results from the
full numerical calculation with a = 1.0 × 10−4. For values of Hα <

√
μ∗/(1 +

√
μ∗) ≈ 0.56 the

instability occurs for heating from above (G > 0), and for Hα > 0.56 the instability occurs for
heating from below (G < 0). The stable region (σr < 0) lies between the two curves, and includes
the region where |G| is small.

ũα(z) =
iaP α

2μ∗ (z −Hα)
2 +

iaP α

3μ∗ Hα(z −Hα), ũβ(z) =
iaP β

2
(z+Hβ)

2 − iaP β

3
Hβ(z+Hβ),

(4.4)

w̃α(z) =
a2P α

6μ∗ z(z − Hα)
2, w̃β(z) =

a2P β

6
z(z + Hβ)

2. (4.5)

The corresponding critical temperature gradient is

G =
2HαHβ[Hα + μ∗Hβ][Hα + k∗Hβ]

3[H 2
α − μ∗H 2

β ]

(ρ∗ − 1)Bo

MaCr
. (4.6)

Note that G has a pole where H 2
α = μ∗H 2

β , so that the sign of G depends on the layer
depth. For the aluminum–indium system with a viscosity ratio μ∗ = 1.630, the pole
occurs for Hα =

√
μ∗/(1 +

√
μ∗) = 0.56 (see figure 8).

4.2. Phase-change mode

For small wavenumbers the numerical results indicate that the phase-change mode is
an oscillatory instability (see figure 4) with a frequency that tends to zero for small
wavenumbers (see (4.24)). An approximate analysis may be performed in which the fre-
quency is only retained in the solute diffusion equations, and the interfacial mass and
solute flux balance boundary conditions. The equations have an approximate solution
with linear temperature fields, and constant pressure fields. Specifically, we find

T̃ α(z) = Aα(z − Hα), T̃ β(z) = Aβ(z + Hβ), (4.7)

p̃α(z) = P α, p̃β(z) = P β, (4.8)

ũα(z) =
iaP α

2μ∗ (z − Hα)
2 + Eα(z − Hα), ũβ(z) =

iaP β

2
(z + Hβ)

2 + Eβ(z + Hβ), (4.9)
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w̃α(z) =
a2P α

6μ∗ (z − Hα)
3 − iaEα

2
(z − Hα)

2, w̃β(z) =
a2P β

6
(z + Hβ)

3 − iaEβ

2
(z + Hβ)

2,

(4.10)

c̃α(z) = F α cosh
(√

Sc σ/PrD∗[z − Hα]
)

, c̃β(z) = F β cosh
(√

Sc σ/Pr[z + Hβ]
)

,

(4.11)

where

Aα =
(G∗ − 1)

(Hα + k∗Hβ)
h̃, Aβ =

k∗(G∗ − 1)

(Hα + k∗Hβ)
h̃, (4.12)

F α =
G

m̃α(Hα + k∗Hβ)

h̃

cosh
(√

Sc σ/PrD∗Hα

) , (4.13)

F β =
−G

m̃β(Hα + k∗Hβ)

h̃

cosh
(√

Sc σ/PrHβ

) , (4.14)

Eα =
iaHα[Hα + 2μ∗Hβ]P

α

2μ∗[Hα + μ∗Hβ]
+

iaH 2
βP β

2[Hα + μ∗Hβ]
, (4.15)

Eβ =
−iaH 2

αP α

2[Hα + μ∗Hβ]
− iaHβ[2Hα + μ∗Hβ]P

β

2[Hα + μ∗Hβ]
, (4.16)

P α =
(ρ∗ − 1)[σ + a2 a2 Bo/Cr]

a2 (a1 + a2)
h̃, P β =

(ρ∗ − 1)[σ − a2 a1 Bo/Cr]

a2 (a1 + a2)
h̃. (4.17)

Here

a1 = ρ∗ H 3
α [Hα + 4μ∗Hβ]

12μ∗[Hα + μ∗Hβ]
+

H 2
αH 2

β

4[Hα +μ∗Hβ]
, a2 = ρ∗ H 2

αH 2
β

4[Hα + μ∗Hβ]
+

H 3
β [4Hα +μ∗Hβ]

12[Hα +μ∗Hβ]
.

(4.18)
The dispersion relation is then found to take the form

−D∗G
√

Sc σ/PrD∗

m̃α(Hα + k∗Hβ)
tanh

(√
Sc σ/PrD∗Hα

)
h̃+

G
√

Sc σ/Pr

m̃β(Hα + k∗Hβ)
tanh

(√
Sc σ/PrHβ

)
h̃

= Pr−1 Sc ρ∗ (
w̃α − σ h̃

)
{c̄α − c̄β}, (4.19)

where

w̃α = d1σ h̃ + d2

a2 Bo

Cr
h̃, (4.20)

with

d1 =
(ρ∗ − 1)

12μ∗(a1 + a2)[Hα + μ∗Hβ]

[
H 3

α [Hα + 4μ∗Hβ] + 3μ∗H 2
αH 2

β

]
, (4.21)

d2 =
(ρ∗ − 1)

12μ∗(a1 + a2)[Hα + μ∗Hβ]

[
H 3

αa2[Hα + 4μ∗Hβ] − 3μ∗a1H
2
αH 2

β

]
. (4.22)

The dispersion relation is highly nonlinear and still requires a numerical solution
to find the roots. For example, in figure 9 we show a comparison of the results
using the numerical solution without approximation for a = 1.0 × 10−4 (symbols) and
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Figure 9. Neutral stability curves showing G (a) and σi (b) with a =1.0 × 10−4 for the
oscillatory phase-change mode as a function of the dimensionless layer depth Hα , excluding
the effects of thermocapillarity (Ma = 0) and buoyancy (Ra= 0). The symbols indicate results
obtained using the full numerical scheme without approximation. The dashed curve indicated
results obtained using the small wavenumber approximation (4.19). The solid curves indicate
results using the simplified relations in (4.23) and (4.24). In the upper plot the stable region
(σr < 0) lies between the solid curves, and includes the region where |G| is small.

the roots of the above small wavenumber approximation (dashed curve). The small
wavenumber approximation is in good agreement with the full numerical results. For
small depths Hα < 0.15 there are two roots for G having opposite signs, indicating
instability for heating from both above and below. The solution branch with G > 0 is
increasingly stabilized as Hα approaches Hα = 0.15, and the corresponding frequencies
σi tend to zero. The solution branch with G < 0 has large negative values of G for
small depths Hα , and the frequency σi also becomes large. This branch persists for
Hα > 0.15; both the frequencies and the magnitude of G decrease for increasing Hα .

A further simplification to the small wavenumber dispersion relation in (4.19) can
be found by expanding the hyperbolic tangent functions by writing tanh y ≈ y −y3/3,
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Figure 10. Neutral stability curves for the oscillatory phase-change mode (dashed curves)
and the direct Marangoni mode (solid curves) for the case of heating from above G > 0 with
Hα = 0.1, excluding the effects of buoyancy (Ra= 0), for various values of Ma.

which is a good approximation for small frequencies. The real and imaginary parts
of the resulting expression then give the more useful approximate relations

G
[
Hβ

m̃β

− Hα

m̃α

]
= ρ∗ (d1 − 1) {c̄α − c̄β}(Hα + k∗Hβ), (4.23)

σ 2
i = 3 PrD∗

(
d2

a2 Bo

Cr

)[
m̃αHβ − m̃βHα

]
/
{
Sc(d1 − 1)

[
m̃α D∗ H 3

β − m̃βH
3
α

]}
. (4.24)

Results using this approximation are also shown in figure 9 (solid curves). For our
system this approximation works well for the mode with G < 0 for Hα > 0.40, and
also works well for the mode with G > 0 for Hα < 0.2. For intermediate values in the
range 0.2 <Hα < 0.4, (4.24) predicts negative values for σ 2

i ; specifically, (4.24) produces
σi = 0 for Hα = m̃α/(m̃α +m̃β) ≈ 0.2; at this depth (4.23) exhibits a pole for G. Equation

(4.24) produces a pole in σi for Hα = (D∗m̃α)
1/3/((D∗m̃α)

1/3 + m̃
1/3
β ) ≈ 0.4. This range

of depths over which the simplified approximation breaks down corresponds to the
interval where the full numerical solution for σi is no longer small, in our case with
|σi | � 10−3.

In figure 10 we show numerical results for a depth Hα = 0.1 and Ra = 0. In
contrast to the previous results for Hα = 0.5, these conditions allow the phase-change
mode to occur if the layers are heated from above with G > 0. For Ma = 0, the
most dangerous wavenumber is a =0, and the mode is stabilized for increasing
wavenumbers. The behaviour of the phase-change mode becomes complicated as the
effects of thermocapillarity become important. For Ma = 10 000 a direct Marangoni
mode lies above the oscillatory phase-change mode. The two modes have similar
values of G over a range of wavenumbers, after which the Marangoni mode is
stabilized near a = 0.4; the oscillatory mode persists to larger wavenumbers. For
Ma= 40 000 the Marangoni mode is most dangerous for a =0, and the oscillatory
mode branches off the direct mode at a finite wavenumber and does not persist to
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small wavenumbers. This trend continues for Ma = 92 750, as the Marangoni mode is
increasingly unstable.

5. Discussion
The phase-change mode we have described for the two-component aluminum–

indium system is reminiscent of the oscillatory mode computed by Huang & Joseph
(1992) for the single-component water-steam system. The single-component mode
is a convective instability driven by the coupling between interfacial temperature
and pressure as discussed in McFadden & Coriell (2009). The oscillatory phase-
change mode in the aluminum–indium system is also a convective instability, but
is driven by solute diffusion, as can be seen from the approximate expressions in
(4.23) and (4.24) derived in the small wavenumber limit. This mode is predicted
to occur for heating from below for thin layers of the β-phase, and can occur for
either heating from above or below in the other extreme. A constitutional supercooling
argument (Tiller et al. 1953; Coriell & McFadden 1994) would suggest that instabilities
might be expected in either case, although if either layer becomes relatively thin the
strong influence of nearby isothermal no-slip boundaries on suppressing flow and
temperature fluctuations would be expected to provide a stabilizing effect in that
layer. We have assumed both liquid phases are in contact only at the phase boundary
z = h(x, t); the possibility of bulk nucleation of one phase in the interior of the other,
and/or spinodal decomposition, is neglected.

The pressure effects that are important in the single-component phase-change
mode act through the Clausius–Clapeyron relation that relates the interfacial
pressure and temperature. For the two-component case, the stronger coupling is
between temperature and solute through the equilibrium relations in (2.27) and
(2.28). A pressure effect does enter into a more complete version of this boundary
condition, which is the linearized form of the thermodynamic equilibrium conditions
μ̃A(T α, pα, cα) = μ̃A(T β, pβ, cβ) and μ̃B(T α, pα, cα) = μ̃B(T β, pβ, cβ), but for liquids
that are well removed from the critical point the effects of pressure in these relations
are negligible, as, for example, ∣∣∣∣∂μ̃A

∂pα
p̃α

∣∣∣∣ �
∣∣∣∣∂μ̃A

∂cα
c̃α

∣∣∣∣ . (5.1)

More specifically, the linearized versions of these dimensionless boundary conditions
take the form

G
[
T̃ α + G∗h̃

]
= m̃αc̃

α + ñαα

[
p̃α − ρ∗ Bo

Cr
h̃

]
− ñαβ

[
p̃β − Bo

Cr
h̃

]
, (5.2)

G
[
T̃ α + G∗h̃

]
= −m̃β c̃

β + ñβα

[
p̃α − ρ∗ Bo

Cr
h̃

]
− ñββ

[
p̃β − Bo

Cr
h̃

]
, (5.3)

where ñαα = ñαβ and ñββ = ñβα are all of the order of 10−13 (see table 3); since
numerical calculations indicate that these terms are unimportant, we have neglected
these terms for simplicity in our model.

We have also neglected pressure effects in the surface energy, which we have taken to
depend only on temperature. The Gibbs adsorption equation relates thermodynamic
variations in surface energy to changes in the interfacial temperature and chemical
potentials, and these variables are constrained to lie on the co-existence curve at a
given pressure. Extremely large deviations from atmospheric pressure are required to
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produce changes in these relations, and so for simplicity we have also neglected the
effects of pressure variations on the surface energy.

The range of temperature variations allowed in the Boussinesq approximation
provides further limitations on the accuracy of our model. The temperature difference
across our system is given in dimensional terms by ΔT ≈ G TM , where TM = 909.65 K.
The critical values of G for buoyant modes that we calculate are of the order of
0.1 or less in magnitude, depending on the layer depth, corresponding to heating
by roughly a hundred degrees Kelvin or less, which is not unreasonable in metallic
systems. Smaller variations of temperature for instability of the phase-change mode
would be required for conditions closer to the thermodynamic critical point of the
system where the slopes m̃α and m̃β are reduced.

6. Conclusion
We have performed linear stability calculations for horizontal fluid bilayers in a two-

component system that can undergo a phase transformation, taking into account both
buoyancy effects and thermocapillary effects. We have obtained values for the applied
temperature difference across the system that is necessary to produce instability by a
linear stability analysis, using numerical and small wavenumber approximations. In
addition to buoyant and thermocapillary modes of instability, we find an oscillatory
phase-change instability due to the combined effects of solute diffusion and fluid
flow that persists at small wavenumbers. This mode is sensitive to the ratio of the
layer depths, and for certain depths can occur for heating from either above or
below. The combined effects of buoyancy and thermocapillarity during heat and mass
transport provide a wealth of coupled instabilities in this simple system, illustrating
the challenges that arise in materials processing applications for multicomponent
systems.

It is a pleasure to acknowledge S. H. Davis, who has provided exemplary scientific
inspiration and congeniality to generations of students and colleagues in fluid
mechanics and applied mathematics. The authors are grateful for helpful discussions
with Ursula Kattner, who provided the reference to the work by Coughanowr (1989).

Appendix
An assessment for the aluminum–indium system by Coughanowr (1989) produced

an explicit model for the molar Gibbs free energy ḡm(T , p, X) =Xμ̄In(T , p, X) + (1 −
X)μ̄Al(T , p, X). Here μ̄Al and μ̄In are the chemical potentials (per mole) of aluminum
and indium, and T , p and X are the temperature, pressure and mole fraction of
indium, respectively. Specifically, at atmospheric pressure pR we have

μ̄Al(T , pR, X) = μ̄0
Al(T ) + R T log(1 − X) + a0X

2

+ a1(3X2 − 4X3) + a2(5X2 − 16X3 + 12X4), (A 1)

μ̄In(T , pR, X) = μ̄0
In(T ) + R T log(X) + a0(1 − X)2

+ a1(1 − 6X + 9X2 − 4X3) + a2(5X2 − 16X3 + 12X4), (A 2)

where μ̄0
Al =(10711.0−11.473 T ), μ̄0

In = (3283.0−7.639 T ), a0 = (21259.6−0.48737 T ),
a1 = (3850.3 − 1.20564 T ), and a2 = (5479.2 − 3.16805 T ). Here the chemical potentials
are in J mol−1, T is in K and R = 8.3143 J (K·mol)−1 is the ideal gas constant.
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In this work we further assume

μ̄Al(T , p, X) = μ̄Al(T , pR, X) + V̄Al(T )[p − pR], (A 3)

μ̄In(T , p, X) = μ̄In(T , pR, X) + V̄In(T )[p − pR], (A 4)

where the partial molar volumes V̄Al and V̄In depend only on temperature. Their
values may then be determined from the densities of pure aluminum and indium,
and their molecular weights ωAl = 0.0269815 kg mol−1 and ωIn = 0.114818 kg mol−1.
In the governing equations it is convenient to replace the mole fraction X by the
corresponding mass fraction c; they are related by c = XωIn/[XωIn + (1 − X)ωAl]. In
the resulting model the liquid density (in either phase) depends only on temperature
and composition, and satisfies

1

ρ(T , c)
=

c

ρIn(T )
+

(1 − c)

ρAl(T )
, (A 5)

Following Gale & Totemeier (2004) we take the densities of the pure components to be
ρAl(T ) = 2385−0.2800(T −933.15) kg m−3 and ρIn(T ) = 7023−0.6798(T −429.75) kg
m−3. The dynamic viscosities have the Arrhenius form

μ = μ0 exp(E0/RT ), (A 6)

where μ0 and E0 are constants. For aluminum, T0 = 660.0 C, μ0 = 0.1492 × 10−3 N s
m−2 and E0 = 16.5 × 103 J mol−1. For indium, T0 = 156.6 C, μ0 = 0.302 × 10−3 N s
m−2 and E0 = 6.65 × 103 J mol−1.

The surface energy is given by

γ = γ0

(
1 − T

T0

)δ

, (A 7)

where T0 = 838 C, γ0 = 508.0 × 10−3 Jm−2 and δ = 1.73 (Merkwitz & Hoyer 1999).
Then

dγ

dT
=

−δ γ

(T0 − T )
. (A 8)
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